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ABSTRACT

Dead reckoning for on-foot navigation applications cannot
be computed by double integration of the antero-posterior
acceleration. The main reasons are the alignment problem
and the important sensor systematic errors in comparison
to human walking speed. However, raw accelerometer
signal can furnish helpful information on steps length as a
function of the walk dynamics. As stride length naturally
varies, a continuous adaptation is necessary. In the
absence of satellite observable, a recursive prediction
process is used. When GPS signal is available, adaptive
Kalman filtering is processed to update both the stride
length and the recursive prediction parameters. This paper
shows the different necessary stages for individual stride
calibration as basis of global on-foot dead reckoning
applications. This study lies within the framework of a
project that aims at analyzing the daily activity of people.
Precise continuous positioning, but not necessarily in real-
time conditions, appears of evident interest. The global
procedure and several test results are presented.

1. INTRODUCTION

What is a more common displacement method for humans
than walking? But behind this simple way of displacement
are numerous complex physiological processes that are
difficult to modelize. This complexity becomes obvious
when one tries to apply classical GPS-INS algorithms
(Briting 1971, Titterton 1997) to the data collected by
miniaturized sensors carried by a person. If dead
reckoning for vehicles can be satisfactory resolved by
means of inertial and map matching technologies, a

similar approach is difficult to adopt for on foot
navigation. The first problem to solve is the alignment of
the IMU (Inertial Measurement Unit). Second, the
inherent systematic errors present in small IMU quickly
accumulate to non permissible positioning errors. Such
characteristics do not allow one to compute his position by
double integration of the acceleration. An alternative is to
use accelerometry signal pattern rather than its value to
count the steps (Judd 1997). Considering a constant stride,
taking the pace count, and multiplying it by the step length
provide the covered distance. As this parameter will
mostly and directly influence the precision of the position
during the dead reckoning phase, its parameterization is of
first interest (Gabaglio 1999, Ladetto et al. 1999).

Stride detection in a continuously recording process is
based on the assumption that one is able to identify when
a step occurs. Depending on the accelerometer used and
the sampling frequency of the signal, different strategies
can be applied. Considering the Shannon theorem and the
frequency of human motions, investigation are carried out
using 40 Hz accelerometry raw data. This allows a precise
timing of the step occurrence, as well as detailed pattern
recognition.

The accuracy of the continuous step calibration will
depend directly on the accuracy of kinematic positioning
using differential GPS (Leick 1994). Within the range of
variation of the strides, the ideally required precision is at
the centimeter level. Such demanding accuracy is
commonly reached after determining the cycle
ambiguities (biases) of the carrier-phase observable for
each satellite. Within the context of the present
application, phase positioning is not reasonably
conceivable. Several tests have shown that for short
distances (up to 5 km) between the reference and the
mobile receiver (i.e. the person), the 3-D positions
calculated with the phase and with the code data match
within 5 cm (Perrin 1999). The reason is that stride
calibration needs only precise relative distance between
two points rather than absolute localization.

The variation of a stride can be modeled as a function of
several parameters: the step frequency, the signal variance
and the incline of the road. For a realistic step length



prediction, it is necessary to consider the internal, natural
variability of the stride at a given frequency. As briefly
discussed here, it is important to keep in mind that human
stride is everything but constant.

It is obvious the traveled distance without continuous
heading information is not relevant. In order to provide all
necessary parameters once navigating without satellites,
we are integrating a GPS receiver to a high accuracy
positioning module (Leica DMC-SX™). This device
includes three magnetic field sensors, three accelerometers
which are also used as tilt sensors, and a thermometer. All
sensors are connected to an integrated data logger. This
paper focuses on the step lengths determination. It
presents a physiological approach that takes into account
the individual natural stride variation of people, as well as
different walk dynamics.
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Figure 1: Accelerometry signal variance during different
frequencies of walk.

The structure of the paper is as follows. First, a
description of the accelerometer signal as well as the
analyzed step pattern is given. Then the step detection
procedure is presented together with its modelization and
a wavelet pre-processing of the signal. Finally, the dead
reckoning calibration procedure using recursive prediction
and adaptive Kalman filtering is discussed. Closed form
formulas characterizing adaptive Kalman filter are
presented, and the results are shown for several outdoor
tests.

2. DISPLACEMENT DETECTION

Accelerometry is a very powerful tool to modelize
different kinds of human activities (Aminian et al. 1999).
The interest here is not to know if a person was standing
or sitting, but only to detect when that person is walking.
Using tri-axial accelerometers, intuition guides us to
analyse the vertical and antero-posterior (direction of the
run) signals. The computation of the signal variance at one
second intervals permits the detection of walking periods.
The mean variance over a short period appears to be well
correlated with the step frequency. The Figure 1 displays
the computed variance of the vertical signal during

walking at different given frequencies. An individual
calibration is necessary to fix the correct walking
threshold, especially when people move very slowly.
Effectively, a small variance value for someone who
walks very lightly will not imply a displacement for one
who strongly beats the steps.

Different tests (Perrin et al. 2000) have shown that the
most natural and pleasant step frequency seems to be
around 110 steps/min (~1.8Hz). This will play a
significant role during the calibration.

3. STEP DETECTION

All the necessary information to detect a step occurrence
is found in accelerometer signal. Using the same example,
detection algorithms can be applied on both the vertical
and antero-posterior signal. Several identification
strategies are possible, but we show the one that appears
to give the most robust results with the least computation
time. The global idea is to localize maxima within a fixed
interval. The size of this interval depends on the analyzed
signal. When working with vertical acceleration, a
characteristical pattern of two peaks, close in time, can
appear at each step depending where the sensors are
placed on the body. These correspond to the impacts of
the heel and of the sole with the ground. The heel impact
normally shows the biggest value for flat and light incline
walks, but the pattern also varies from one person to the
other. Mechanics completely changes once the slope is
becoming larger than 10%.
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Figure 2: Typically shifted antero-posterior and vertical
acceleration pattern while walking. Sensors are placed on
the low back (up) or on the thorax (low).

The antero-posterior acceleration presents one main
maximum, corresponding to the heel impact, as can be
seen in Figure 2. Physically, this represents the forward



displacement of the body. Ideally integrating this signal
twice, after the attitude determination of the IMU, should
permit to deduce the step length. The step identification
using the presence of both shifted peaks should be
considered as the most physiologically correct strategy.
The rapid and brief variation of both individual
accelerations allows to work with only one signal to give a
robust step detection. A combined analysis has been
tested, and validated the chosen approach.

As one step will be defined as the traveled distance
between two heel impacts, this introduces a necessary
notion of time interval between them. If a maximum is not
followed, after a certain time, by another one, the person
is still considered at the previous location. Such
singularities generally occur during short and non regular
walking periods.

Taking wrong time intervals will give an over(-under)
evaluated number of steps. In dead reckoning mode, this
rapidly leads to errors of tens of meter in long traveled
distances. Such an error source can be partially removed
by band-pass filtering the signal or by applying the
wavelet transformation (Matlab 1998, Thonet et al 1998).
A wavelet transform is used in the following.

The original signal passes through two complementary
filters. It is divided into its low frequencies
(approximation) and  high  frequencies  (detail)
components. By iterating this process n times on the
resulting approximation, the signal is broken into lower
resolution components. This is called the wavelet
decomposition tree, and n is the number of computed
levels. The choice of the wavelet family is function of the
signal characteristics to analyze. In the present
application, the pattern of the acceleration is lost to the
benefit of a better shape. Figure 3 presents both raw and
pre-processed data using the Meyer wavelet function. The
signal decomposition was performed at level 4. The detail
at this level reproduces the step frequency very well, with
one maxima only at each occurrence.
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Figure 3: Raw and pre-processed signal using Meyer
wavelet function at level 4 decomposition.

4. STEP MODELIZATION

Ideal modelization is achieved when the measurement
totally fits the observable through the model. If humans
walked with constant steps length, the calibration would
be easy. But as beautifully expressed by the English poet
Abraham Cowley : "The world is a scene of changes and
to be constant in Nature were inconstancy!”. Several
outdoor tests have demonstrated different walking
particularities.

e Certain people show an “ideal” step length,
independent of the frequency and of the road
incline. Athletic people often present this kind of
particularity.

e There is not always symmetry between steps of
right and left legs. Step lengths are rarely equal,
and 5 cm differences are common.

e Globally, a good correlation (> 0.6) is observed
between the step length and the step frequency.

Taking into account all precedent observations, the
predicted step length will be computed using the
following equation:

Step length=A +B - Freq+C-Var+w (1)

A, B, C : Computed parameters by linear regression
Freq : Actual step frequency
Var : Variance of the signal

W : Gaussian noise N~(0, G)

The step frequency can be determined with a changing
number of occurrences using a Fast Fourier
Transformation (FFT) or by time differencing the
maxima. Since the dynamic of walk can change very
rapidly, the smaller the calibration period, the quicker the
adaptation of the estimated value. The estimation quality
will then directly depend of the “individually” computed
parameters of the regression. Once determined, they are
fixed per person for the interval inside which the step
sizes are varying. The continuous interval variation and
recalibration is realized through the use of the adaptive
Kalman filter.

5. ADAPTIVE KALMAN FILTERING

As currently defined (Kalman 1960, Brown & Hwang
1997), the Kalman filter is an optimal combination
between the time propagated estimate from a previous
time instant, and the measurement at the present instant.
This optimal combination is dependent on the error
variance of both the prior estimate and the current
measurement. The Kalman filter estimates the state of a



dynamic system driven by white noise. The system, in the
state space form is described by :

x(K) =0k —1) x(k—1)+u(k—1) @)

y(k)=H(k)x(k) +n(k) 3)

where X is the state vector composed of the variables that
completely describe the dynamic system (steps length),
and y is the observation vector of cumulated distances.
u(k) and n(k) are uncorrelated and represent the process
and measurement noise with known covariance matrix
Qq(k) and R(k), respectively. ¢(k) is the state transition
matrix, and H(k) the observation matrix.

The Kalman filter update is a recursive two-step process.
The time measurement update is given by:

x(k) = x7 (k) + K(k) - (y(k) - y(k)) (4)

where x~ (k) denotes the calculated a-priori estimate. The
“hat” denotes an estimate and the superscript minus
indicates that this is the best estimate prior to assimilating
the measurement at time t;.

K(k) if the gain calculation and can be written as:
K(k) =
P~ (k)-H" (k)-[R(k)+H(k)-P(k)-HT ()]! (%)

where P is the error covariance matrix, computed for
stability reasons (Farell & Barth 1998, Merminod 1989) in
the Joseph Form:

P(k)=

6
[1- K(h)-H(K) TP (k)-[I- K(h)-HK)]" +K(k)RK)KK)" ©

The recursive Kalman filter gain can then be extrapolated
in time as follows:

(k)= ok —1)-xk(k—1) o

P (k)= 0(k—1)-P(k—=1)-o(k—1)" +Qq(k—1) )
The adaptive context comes from the processing noise
uncertainty and variability. In this application, no standard
values are available. The most probable value comes from
examining the physics of the problem. Qq represents here
the uncertainty by which the predicted step length can
match the true value. As filtered steps values are supposed
constant for a definite interval, the bigger the residuals
with the predicted steps length (1), the bigger the Qq
value. Computing the Gaussian distribution of this
residuals will give an information about the processing
noise.

6. DESIGN OF THE COMBINED FILTER

The step length will be predicted using a recursive least
squares approach when GPS data are not available. The

number of steps taken into account to predict the next
value will influence the time response of the filter to an
abrupt change in the step length (e.g. walk — run). The
different tests were conducted with a 20 steps update
period. All studies made on an average of 20 people
brought to the fore that the step length is more irregular
when walking slowly. Values might vary from 4% at 130
steps/min rate walk to 15% for a 60 steps/min walk. If we
consider a mean step value of 75 cm, the standard
deviation of the step length varies from 3 cm to 11 cm
depending on the frequency.
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Figure 4: Predicted step values at different frequencies
with normal distribution of the error.

Taking into account this natural characteristic, a following
prediction procedure is adopted:

1. Consider a constant step value S on the interval
of t steps

2. Compute the residuals between S and the
predicted value using equation (1)

3. Estimate the mean and the variance of the
normal distribution of these residuals N~(U, G).

4. Compute the next constant S = S+

This approach takes into account the natural behaviour of
human walk. Although steps are not constant, they are
normally varying around a more stable value. The
presented procedure tries to take advantage of this
property considering the Gaussian noise distribution. At
the same time, it smoothes the effect of possible outlier
values that can happen with singular individual
accelerometer measurement. Figure 4 displays the
predicted step values at different frequencies, showing the
internal variance of the steps. As mentioned earlier, the
biggest variance occurs at the lowest frequency.

When GPS data are available, they will permit both a
recalibration of the step length and the computation of the
regression parameters of equation (1). The state space of
the adaptive Kalman filter is then:



step(k) =step(k-1) + u(k-1) S
Distance (GPS)/# of steps = step(k) + n(k) (10)

Both noises are assumed to be Gaussian. The
measurement noise is fixed to N~(0, 5 [cm]), and the
process noise is initialized with N~(0, 10 [cm]). The state
matrix is fixed to the identity and the observation matrix
simply equal to 1.

The implementation procedure is the following:

1. Measure the stride length given by the GPS
distance divided by the number of steps deduced
from accelerometry (10).

2. Compute the stride length (S) coming from the
prediction procedure.

3. Apply the Kalman filter (4)-(8).

4. Compute the t residuals between the linear
prediction (1) and the new filtered value and
estimate the Gaussian distribution parameters

N~(u, 6).

5. Consider 6° to compute the new “processing
noise” value in (8).

6. Update the regression parameters in function of
the observed step frequency.

If GPS measurements occur at one walking frequency
only, the update is done only on the A parameter of (1). It
corresponds to the average step value. Other parameters
are kept to the previous values until new frequencies can
be observed.

The adaptive Kalman filter supply an adaptation of the
model to a changing walking dynamic of the person.
Figure 5 presents both the recursive prediction and the
adaptive Kalman filtered value of steps length after a
change in walking dynamic. The Kalman filter allows a
complementary and quicker re-parameterization of the
predictive parameters, once GPS data are available. The
precision we get regarding the prediction depends directly
on the type of satellite data available, code or phase.
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Figure 5: Necessity to re-parameterize the predictive
equation by mean of adaptive Kalman filtering.

In order to validate the approach described in this paper,
studies were done with data from 22 different subjects.
The errors on the traveled distances vary from 0.45% to
1.93%, and this, independently of the distance considered.
Courses were realized on standard asphalt roads with
slopes varying up to 17% and on tartan athletic tracks.

SUMMARY AND CONCLUSION

While almost solved for vehicle navigation using
odometers and map-matching, dead reckoning for on-foot
applications requires another and more individual
approach. The accelerometry signal is not integrated to
deduce the position, but used to localize the steps
occurrences. As wheel circumference for cars, the stride
length is the fundamental parameter for pedestrian dead
reckoning strategies. More dependent on individual
walking characteristics than on accelerometer errors,
nature imposes its own modelization limits from which we
can cautiously derive the following rules.

e As steps length is not constant but exhibits a
continuous variation around a more stable value,
the Gaussian approximation seems the most
appropriate model. This concretely means that
under-estimated steps length are compensated by
over-estimated ones when computing the
distance traveled.

e  The analyzed tests of several walking frequencies
show differences between the effective and
predicted distance of less than 2%. For example,
this results into a difference of 40.8 m for 2°300
m distance realized in 2’905 steps. In other
words, this corresponds to a distributed error of
1.4 cm per step. Such value is fully acceptable in
view of the previous remark.

e The tests reveal a non significant impact for
slope smaller than 10 %. As the studies were
made with young and healthy people, this remark
is to be wisely considered.

e Special conditions such as stair walking, as well
as displacement in more “unfriendly” pedestrian
regions, still have to be studied to refine the
modelization. The influence of ground structures
on the walking dynamic is also to be considered.

Facing the wonderful complexity of human beings,
any adapted step modelization cannot be realized
without a basic understanding of its physiological
aspect. This is the motivation behind such
multidisciplinary approach.
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