
Human Walking Analysis Assisted by DGPS

Quentin Ladetto1, Vincent Gabaglio1, Bertrand Merminod1, Philippe Terrier2, Yves Schutz2

1Geodetic Laboratory, Institute of Geomatics, Swiss Federal Institute of Technology, Lausanne, Switzerland
2Institute of Physiology, University of Lausanne, Switzerland

BIOGRAPHY

Quentin Ladetto is a Ph.D. candidate in the Geodetic
Engineering Laboratory at the Swiss Federal Institute of
Technology in Lausanne (EPFL). He holds a M.Sc. in
Surveying Engineering from the same University. His
present research focuses on INS-GPS integration for
human positioning.

Vincent Gabaglio is a Ph.D. candidate in the Geodetic
Engineering Laboratory at the EPFL. He holds a M.Sc. in
Surveying Engineering from the same University. He
currently investigates on algorithms for a dead-reckoning
navigation system for people and its integration with GPS
positioning.

Bertrand Merminod is ordinary Professor at the Geodetic
Engineering Laboratory (EPFL). He earned his M.Surv. at
the University of New South Wales (Australia) before
working as geodesist in Lesotho for the Swiss
Development Co-operation as well as product manager
with Leica.

Philippe Terrier is a PhD student graduated in Biology at
the University of Lausanne. He obtained a diploma in
biomedical engineering at the EPFL. His research projects
deal with new methods to study energy expenditure
induced by locomotion.

Yves Schutz got his PhD at the University of California in
Berkeley (USA) and is currently lecturer in Physiology at
the Faculty of Medicine (University of Lausanne). His
interest relates to the energy requirement of human and
the relationship between physical activity, sports and
health.

ABSTRACT

The recent advent of high sampling frequency GPS
receivers opens new perspectives for the analysis of
human walking pattern. Coupling satellite signal with tri-
axial accelerometry gives important information on the
step length of individuals. The stride length variability
directly influences dead reckoning for on-foot navigation
when the position cannot be computed by double
integration of the antero-posterior acceleration. The main
reasons are the alignment problem and the important
sensor systematic errors in comparison with human
walking speed. However, raw acceleration signals can

provide helpful information on both the velocity and the
walk dynamics. Different tests were conducted to assess
the stride length as a function of several cumulative
parameters such as slope and step frequency. As such
parameters naturally vary, a continuous adjustment is
necessary. This paper presents a physiological approach
for an individual stride calibration as basis for global
pedestrian dead reckoning applications. This study lies
within the framework of a project that aims at analysing
the daily activity of people. Precise continuous positioning
appears of evident interest.

1. INTRODUCTION

“227 steps East from the Holy Cross, then 175 steps South
and you’ll find the treasure location.” This novelistic
description of a determined trajectory serves as basis for
modern on foot navigation applications. If satellite signals
are available, accurate positions can be computed by
differential GPS and the receiver will guide one directly to
the coveted treasure. Under a dense vegetal canopy or in
urban canyons where GPS data cannot be picked up, the
positioning strategy changes and the length of the steps
will greatly influence the location of the digging.

If counting strides appears an intuitive means to calculate
a travelled distance, the considered step length directly
influence the computed approximation. This more
common way of displacement is function of numerous
complex physiological processes, which are difficult to
model. Like the wheel circumference for cars, the stride
length is the fundamental parameter for pedestrian dead
reckoning strategies. If dead reckoning for vehicle can be
satisfactorily solved by means of inertial and map
matching technologies, a similar approach is difficult to
adopt for on foot navigation. The main reason is that the
systematic errors present in a small Inertial Measurement
Unit (IMU) are too important in comparison with human
walking speed. Therefore, positions cannot be computed
by double integration of the acceleration. An alternative is
to use the accelerometer signal pattern to deduce the step
occurrences and continuous heading information supplied
by magnetic field sensors. Considering an appropriate
stride, taking the pace count and multiplying it by the step
length will provide the covered distance (Judd 1997,
Gabaglio 1999, Ladetto et al. 1999).



As the human stride is everything but constant, a
continuous step calibration is necessary. Within the range
of variation of the step length, the required precision is at
the centimetre level. Such required accuracy is commonly
reached after determining the cycle ambiguities of the
carrier phase observations for each satellite (Leick 1994).
However, for short baselines (less than 5 km), both phase
and differential code solutions (differentiation of 2
successive positions) match within 5 cm (Perrin 1999).
This permits to work with code solutions that are more
convenient for this kind of application.

The length of a stride can be modelled as a function of
several parameters such as the step frequency and the
accelerometer signal covariance. The biological step
length variability has to be taken into account for a
realistic approach. All physiological characteristics will be
considered during the dead reckoning procedure involving
wavelet pre-processing of the signal and both
complementary recursive prediction and adaptive Kalman
filtering. In order to better understand the influence of
these parameters, several tests were made in real-life
situation of outdoor walking. This paper focuses on the
step length determination as well as the inter- and intra-
individual variability of locomotion in function of external
(for instance slope) and internal factors (for instance
metabolic energy requirement).

The structure of the paper is as follows. First, a
description of the accelerometer signal as well as the
analyzed step pattern is given. Then the analysis of several
tests bringing to the fore the main parameters used for step
length modelisation during both GPS signal availability
and  dead reckoning periods is done. Finally, the
assessment with GPS of the external mechanical work of
walking is discussed.

2. DETECTING STEP OCCURENCES

All the necessary information to detect a step occurrence
is found in accelerometer signal. Using the same example,
detection algorithms can be applied on both the vertical
and antero-posterior signals. Several identification
strategies are possible, but we show the one that appears
to give the most robust results with the least computation
time. The global idea is to localize maxima within a fixed
interval. The size of this interval depends on the analyzed
signal. When working with vertical acceleration, a pattern
of two peaks, close in time, can appear at each step
depending where the sensors are placed on the body These
correspond to the impacts of the heel and of the sole with
the ground. The heel impact normally shows the biggest
value for flat and light incline walks, but the pattern also
varies from one person to the other. Mechanics of walking
completely changes once the slope is becoming greater
than 10%.
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Figure 1: Typically shifted antero-posterior and vertical
acceleration pattern while walking. Sensors are placed on
the low back (up) or on the thorax (low).

The antero-posterior acceleration presents one main
maximum, corresponding to the heel impact, as can be
seen in Figure 1. Physically, this represents the forward
displacement of the body. Ideally integrating this signal
twice, after the attitude determination of the IMU, should
permit to deduce the step length. The step identification
using the presence of both shifted peaks should be
considered as the most physiologically correct strategy.
The rapid and brief variation of both individual
accelerations allows to work with only one signal to give a
robust step detection. A combined analysis has been tested
using both signals together, and it validated the chosen
approach.

As one step will be defined as the traveled distance
between two heel impacts, this introduces a necessary
notion of time interval between them. If a maximum peak
is not followed, after a certain time, by another one, the
person is still considered at the previous location. Such
singularities generally occur during short and non regular
walking periods.

Taking wrong time intervals will give an over(-under)
evaluated number of steps. In dead reckoning mode, this
rapidly leads to errors of tens of meter in long traveled
distances. Such an error source can be partially removed
by pre-processing the signal, computing wavelet
transformation (Matlab 1998, Thonet et al 1998). This
provides a more smoothed signal where the acceleration
pattern is lost to the benefit of a better shape.

The original signal passes through two complementary
filters. It is divided into its low frequencies
(approximation) and high frequencies (detail)
components. By iterating this process n times on the
resulting approximation, the signal is broken into lower
resolution components. This is called the wavelet
decomposition tree, and n is the number of computed



levels. The choice of the wavelet family is function of the
signal characteristics to analyze. In the present
application, the pattern of the acceleration is lost to the
benefit of a better shape. Figure 2 presents both raw and
pre-processed data using the Meyer wavelet function. The
signal decomposition was performed at level 4. The detail
at this level reproduces the step frequency very well, with
one maxima only at each occurrence.
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Figure 2: Raw and pre-processed signal using Meyer
wavelet function at level 4 decomposition.

3. INDIVIDUAL VARAIBILITY

Because a good knowledge of the gait pattern is of major
importance for dead reckoning, we also performed
different experiments to highlight the inter- and intra-
individual variability of locomotion in function of external
(for instance slope) and internal factors (for instance
metabolic energy requirement).
Fourteen subjects, nine men and five women, aged
between 21 and 28 participated in the study. Subjects
characteristics were (mean ± SD): age: 24.6±2.4 yr.
Weight: 73.9±11.9 kg (with the weight of the devices).
Height: 174±9 cm. Body Mass Index (BMI): 21.7±2.5
kg/m2 (without the weight of the devices).

The study took place along a circuit on which the subjects
had to walk twice at their own pace and without external
constraints except wearing the GPS receiver. The total
length for one run was 1310 meters and the cumulated
uphill height difference was 67 meters. There were flat
sections but the slope exceeded 17 percents for some other
sections.

The precise positioning of the subjects was realised with
two Leica System 500 double frequency GPS receivers,
measuring at a 5 Hz rate in differential phase mode.

Four parameters were averaged from GPS data over 7
seconds periods: walking speed, stride frequency
(assessed by Fourier transform analysis), stride length
(calculated from speed and stride frequency), and slope.
The different parameters were sorted according to the

slope into 5 categories: very down (<-9%), down (-3%-
9%), level (-3%-+3%), up (+3-+9%), very up (>+9%).

The aim of the study was to analyse how people adapt
their gait in function of incline.

Figure 3. Adaptation of the gait to the slope. Bars are the
relative difference between level walking (-3% to +3%
slope) and the uphill or downhill walking. Data are mean
(N=14) +/- SD.

The results show that the subjects did not modify
significantly their walking speed in downhill walking as
compared to level walking. They slowed down (-15.3%)
only in very steep uphill sections of the circuit (>+10%
incline). This speed change was induced primarily by a
reduction of SF. It has to be stressed that a large inter-
individual variation was observed. These results may be
taken into account for dead-reckoning purposes because
important slope modify the step length.

4. MODELING THE STEP LENGTH

Taking into account all precedent observations, the
predicted step length will be computed using the
following equation:

Step length = A + B · Freq + C · Var + w (1)

A, B, C : Computed parameters by linear regression

Freq : Actual step frequency

Var : Variance of the signal

w : Gaussian noise N~(0, σ)

The step frequency can be determined with a changing
number of occurrences using a Fast Fourier
Transformation (FFT) or by time differencing the
maxima. Since the dynamic of walk can change very
rapidly, the smaller the calibration period, the quicker the
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adaptation of the estimated value. The estimation quality
will then directly depend of the “individually” computed
parameters of the regression. Once determined, they are
fixed per person for the interval inside which the step
sizes are varying without any possible update (no GPS
dada available). The continuous interval variation and
recalibration is realized through the use of an adaptive
Kalman filter (Kalman 1960, Brown & Hwang 1997).

The adaptive context comes from the processing noise
uncertainty and variability. In this application, no standard
values are available. The most probable value comes from
examining the physics of the problem. The processing
noise represents here the uncertainty by which the
predicted step length can match the true value. As filtered
steps values are supposed constant for a definite interval,
the bigger the residuals with the predicted steps length are,
the bigger the processing noise value is. Computing the
Gaussian distribution of this residuals will give an
information about the processing noise.

5. CONTINUOUS STEP CALIBRATION

Let us now apply the recursive least squares steps length
prediction when no GPS data are available. The number of
steps taken into account to predict the next value will
influence the time response of the filter to an abrupt
change in the step length (e.g. walk → run). The different
tests were conducted with a 20 steps update period. All
studies made on an average of 20 people brought to the
fore that the step length is more irregular when walking
slowly. Values might vary from 4% at 130 steps/min rate
walk to 15% for a 60 steps/min walk. If we consider a
mean step value of 75 cm, the standard deviation of the
step length varies from 3 cm to 11 cm depending on the
frequency.
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Figure 4: Predicted step values at different frequencies
with normal distribution of the error.

Taking into account this biological characteristic, a
following prediction procedure is adopted:

1. Consider a constant step value S on the interval
of t steps

2. Compute the residuals between S and the
predicted value using equation (1)

3. Estimate the mean and the variance of the
normal distribution of these residuals N~(µ, σ).

4. Compute the next constant S = S+µ

This approach takes into account the “natural” behavior of
human walk. Although steps are not constant, they are
normally varying around a more stable value. The
presented procedure tries to take advantage of this
property considering the Gaussian noise distribution. At
the same time, it smoothes the effect of possible outlier
values that can happen with singular individual
accelerometer measurement. Figure 4 displays the
predicted step values at different frequencies, showing the
internal variance of the steps. As mentioned earlier, the
biggest variance occurs at the lowest frequency.

When GPS data are available, they will permit both a
recalibration of the step length and the computation of the
regression parameters of equation (1). The state space of
the adaptive Kalman filter is then:

Step(k) =step(k-1) + u(k-1) 

Distance (GPS)/# of steps = step(k) + n(k) 

Both noises are assumed to be Gaussian. The
measurement noise is fixed to N~(0, 5 [cm]), and the
process noise is initialized with N~(0, 10 [cm]). The state
matrix is fixed to the identity and the observation matrix
simply equal to 1.

If GPS measurements occur at one walking frequency
only, the update is done only on the A parameter of (1). It
corresponds to the average step value. Other parameters
are kept to the previous values until new frequencies can
be observed.

The adaptive Kalman filter supply an adaptation of the
model to a changing walking dynamic of the person.
Figure 5 presents both the recursive prediction and the
adaptive Kalman filtered value of steps length after a
change in walking dynamic. It is apparent that the
recursive prediction model alone is unable to correctly
predict accurate changes in step length.
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Figure 5: Necessity to re-parameterize the predictive
equation by mean of adaptive Kalman filtering.

6. ASSESSING THE EXTERNAL MECHANICAL WORK

Human locomotion involves a metabolic energy cost. The
muscles provide forces to move the limbs relatively to the
centre of gravity and finally to displace the entire body.
The bipedal locomotion mechanisms imply a vertical lift
of the trunk and a acceleration/deceleration of the body at
each step. The work against inertial forces (kinetic energy
variation) and against gravity (potential energy variation)
are the origin of the effective metabolic energy cost of
walking. The external mechanical work of locomotion has
been extensively studied under laboratory conditions by
using 3D-video analysis. We tested whether new high
precision GPS receivers could provide a sufficient
accuracy to record mechanical work outdoors.

Table 1. Assessing external mechanical work of walking
by using DGPS. The mechanical work necessary to lift
and to decelerate/accelerate the body mass (respectively
work against gravity and work against inertia) was divided
by the time in order to obtain power. The mechanical
efficiency is the mechanical power divided by the
metabolic energy expenditure.. Data are mean +/- SD
(N=5).

Five subjects walked during 5 minutes on an athletics
track. A differential GPS system measured the variation of
the position of the trunk at 5Hz. A portable indirect
calorimeter recorded breath-by-breath metabolic energy
expenditure. It was possible to compute work against

gravity, work against inertia and total external work. The
well-known temporal shift between work against gravity
and work against inertial forces (rolling egg model) was
observed. We found a good correlation between
mechanical external power calculated from GPS data and
energy expenditure assessed by indirect calorimetry.

SUMMARY AND CONCLUSION

Facing the wonderful complexity of human beings, it
appears evident that, as mentioned by the English poet
Abraham Cowley : ”The world is a scene of changes and
to be constant in Nature were inconstancy!”. Because
stride length is the fundamental parameter for pedestrian
dead reckoning strategies, a continuous calibration is
necessary to avoid cumulated distance errors. Contrary to
classical INS-GPS applications, the accelerometer signal
is not integrated here to deduce the position, but used to
localize step occurrences. Several modelisation limits
appears, not occasioned by sensor bias, but by individual
natural walking characteristics from which we can
cautiously derive the following observations.

• As steps length is not constant but exhibits a
continuous variation around a more stable value,
the Gaussian approximation seems the most
appropriate model. This concretely means that
under-estimated steps length are compensated by
over-estimated ones when computing the
distance traveled.

• The analyzed tests of several walking frequencies
show differences between the effective and
predicted distance of less than 2%. For example,
this results into a difference of 40.8 m for 2’300
m distance realized in 2’905 steps (i.e. 1.8%
error). In other words, this corresponds to a
distributed error of 1.4 cm per step. Such value is
fully acceptable in view of the previous
comments.

We conclude that, thanks to the interaction between
surveying engineers (providing expertise in positioning)
and human physiologists together with biomechanics
specialists (providing expertise in gait analysis), a better
knowledge of both dead reckoning and human locomotion
can be obtained.
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Gross metabolic Energy Expenditure (W) 324 ±76
Vertical lift of the trunk (mm) 55 ±14

Power against gravity (W) 70 ±27

Speed variation around average walking speed (m/s) 0.17 ±0.03
Power against inertia (W) 19 ±7

Total mechanical power (W) 72 ±35
Gross mechanical efficiency (%) 21% ±6
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